

Supply and demand analysis for green crowdshipping

GATTA V., MARCUCCI E., NIGRO M., SERAFINI S.

Società Italiana degli Economisti dei Trasporti e della Logistica (SIET) Italian Society of Transport and Logistics Economists XX Scientific Meeting, "Mobility and the city: policies for sustainability" DAStU, Politecnico di Milano Milan, June 20th-22nd, 2018

Introduction (1/2)

Sustainable Urban Freight Transport (UFT) Solutions

Introduction (2/2)

Crowdshipping: an innovative solution to UFT

"...is a sharing mobility service delivering goods via the crowd" (McKinnon, 2016)

- Is it capable to reduce congestion and polluting emissions?
 → usually it relies on dedicated trips with private motorized vehicles!
- **Green Crowdshipping**

(use of non-dedicated public transport trips)

Research question

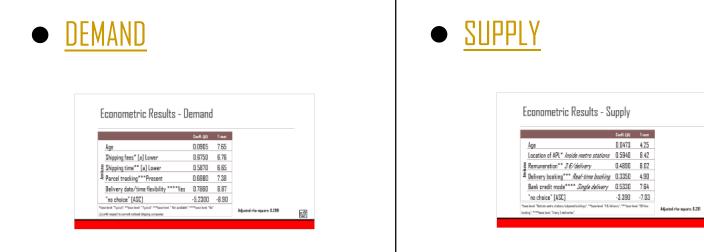
• under which conditions green crowdshippers will produce the service and the customers buy it?

<u>Research project</u>: green crowdshippers using the metro during their regular home-to-work trips in the city of Rome

Methodology

- Stated Preference Surveys
 - Bayesian D-Optimality efficient design developed using JMP (by SAS)
 - 4 different questionnaire blocks each including 3 choice exercises with 2 alternatives for a total of 24 different attribute levels' combinations.
 - O ≈240 respondents
 - inhabitants of the city of Rome (demand-side survey)
 - metro users (supply-side survey)

Attributes and levels


Demand-side survey		Supply-side survey				
Features	Levels	Features	Levels			
Shipping fee (with respect to current national shipping companies)	• Lower (+1)	Location of APL	• Inside metro stations (+1)			
	• Typical (-1)		• Outside metro stations/adjacent buildings (-1)			
Shipping time (with respect to current national shipping companies)	• Lower (+1)	Remuneration	• 3 €/delivery (+1)			
initial and the contemption of	• Typical (-1)		• 1 €/delivery (-1)			
Parcel tracking	• Available (+1)	Delivery booking	• Real-time booking (+1)			
	• Not available (-1)		• Off-line booking (-1)			
Delivery date and Time schedule flexibility	• Yes (+1)	Bank crediting modes	• Single delivery (+1)			
	• No (-1)		• Every 5 deliveries (-1)			

Utility specifications

MNL1 demand-side model: $V_A = \beta_1 * \text{Shipping Fees}_A + \beta_2 * \text{Shipping Times}_A + \beta_3 * \text{Parcel Tracking}_A + \beta_4 * \text{Delivery Planning}_A$ $V_B = \beta_1 * \text{Shipping Fees}_B + \beta_2 * \text{Shipping Times}_B + \beta_3 * \text{Parcel Tracking}_B + \beta_4 * \text{Delivery Planning}_B$ (1) $V_{\text{no choice}} = \beta_5 * \text{Age} + \text{ASC}$

MNL2 supply-side model: $V_A = \beta_1 * \text{Location of } APL_A + \beta_2 * \text{Remuneration}_A + \beta_3 * \text{Delivery booking}_A + \beta_4 * \text{Bank Credit Mode}_A$ $V_B = \beta_1 * \text{Location of } APL_B + \beta_2 * \text{Remuneration}_B + \beta_3 * \text{Delivery booking}_B + \beta_4 * \text{Bank Credit Mode}_B$ (2) $V_{\text{no choice}} = \beta_5 * \text{Age} + \text{ASC}$

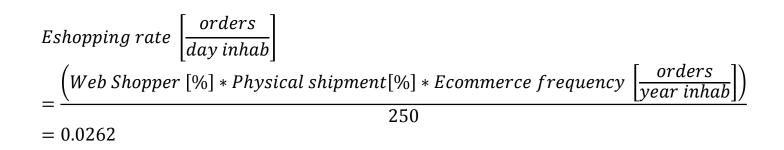
Econometric Results

đ

Scenario Analysis

•	<u>DEM</u>	<u>and</u>							<u>SUI</u>	יאר			
	So	cenario Analysis - demand	rio Analysis - demand						Scenario Analysis - s				
	-	end-side simulation	Scenerio I	Scenaria Z	Scenerie 3	Scenario 4				Sapply-side simulation	Scenario I	Scooria 2	Sconorio 3
		ing fees (with respect to ourrent national shipping companies)	Lever	heical	Laver	haicel				Location of MPL	inside metra stations	kaide metre statiens	Outside metra stations/adjacen buildings
		ing times (with respect to current national shipping companies)	Typical	Typical	Typical	Typical				Benneration	2 E/dalivers	16/delivery	36/delivery
		el tracking	Available	Available	Available	Available -				Baliwry backing	Off-line booking	Off-line booking	Eff-line booking
		ery data and Time schedule flexibility	Yes	Tes	No	51				Bank crediting modes	Single delivery	Single delivery	
	Aha 	bability of adopting a crowdshipping service	BB.1%	59.7%	<i>1E4 %</i>	12.4 %				Probability to act as a crowdshipper	84.8%	54.8%	45.0%
							đ						

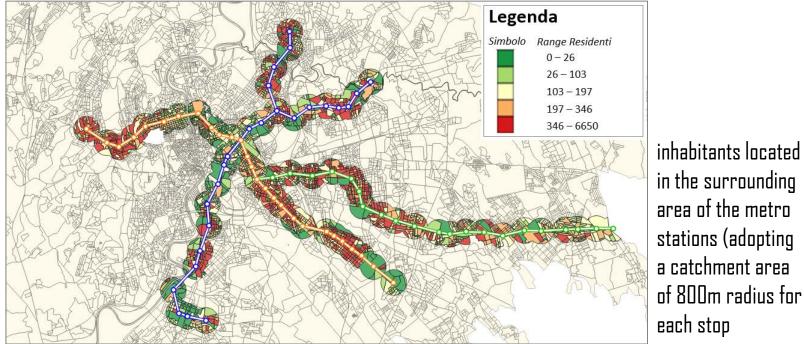
Scenario I Scenerie 2 Scenerie 3 Scenerie 4 kuide metre Butside metre Butside metre stations/adjacent stations/adjacent buildings buildings


Off-line booking Off-line booking Off-line booking Off-line booking Single delivery Single delivery Single delivery Single delivery

1E/delivery

12.8%

đ


Implications (1/3)

where:

- Web Shopper is the percentage of the population making at least one online purchase;
- Physical shipment is the percentage of orders requiring a physical shipment;
- E-commerce frequency is the annual average frequency of online purchase;
- 250 is the number of days in one year, excluding week-end days and public holidays.

Implications (2/3)

Implications (3/3)

Demand SCENARIOS	Metro users* [users/peak hour]	Inhabitants**	Probability to adopt crowdshipping service	Potential demand [orders/day]		
SCENARIO 1			66.10%	14'100		
SCENARIO 2	113'347	C 477 1 5 4	59.70%	12'730		
SCENARIO 3		647'154	16.40%	3'500		
SCENARIO 4			12.40%	2'640		
Supply SCENARIOS	Metro u [users/pea		Probability to act as a crowdshippers	Potential crowdshippers [crowdshippers/day]		
SCENARIO 1			84.6%	38'350		
SCENARIO 2	110%	247	54.8%	24'840		
SCENARIO 3	113':	047	46.0%	20'850		
SCENARIO 4			12.8%	5'800		

*Users of the Rome's metro lines during the peak hour (Roma Mobilità, STATUS 2016).

**Inhabitants in the 800'meters catchment area (elaboration from census data ISTAT 2011, https://www.istat.it/it/archivio/104317).

Conclusions

- APLs location is the most relevant feature (more than remuneration)
- The possibility to plan the delivery date and its time schedule has the highest impact on consumers' utility
- Comparing demand/supply → the service can rely on a sufficiently large base of potential crowdshippers so to be able to manage a substantial number of delivery requests
- There is a potential market for the new service and it is important to pay attention to its design

On-going research endeavours

- Quantifying the environmental effects via Traffic Simulation Modelling
- Test a real-life pilot study (interlibrary loans)
 - Financial, contractual, legal (etc.) aspects

• Including Crowdshipping in the SUMP-logistic in Rome

THANKS FOR THE ATTENTION

